FISH DETECTION LBP CASCADE CLASSIFIER

D.H. Anh, Sriprasertsuk Pao, Kameyama Wataru

Dang Hoang Anh - 2013 GITS – Waseda University

AQUARIUM AR THE OUTLINE

- 1. **Research Objectives**
 - a. AR for aquarium
 - b. System requirement
- 2. PREVIOUS RESEARCHES
- 3. The proposal
- 4. EVALUATION
- 5. CONCLUSION

AQUARIUM AR THE OBJECTIVES

AR FOR AQUARIUM

_AR: overlaying object's information on real time video feed

_AR for Aquarium

- Overlaying fish information in real time
- Low computational Cost

AQUARIUM AR THE OBJECTIVES

AR FOR AQUARIUM

_AR: overlaying object's information on real time video feed

_AR for Aquarium

- Overlaying fish information in real time
- Low computational Cost
- Simple sample collection

AQUARIUM AR RESEARCH

PREVIOUS RESEARCHES

- _ Fish discrimination
- _ Based on complex texture features of the fish
- _ Operate under relatively ideal environment
- _ Computational costly

(a) original MST

(b) estimated correspondences

(c) another MST (d) edges in query im- (e) estimated correage spondences

(f) Detected edges (g) A shape context (h) Shape context matching costs

AQUARIUM AR RESEARCH

THIS RESEARCH

- _ Fish detection and discrimination
- _ Based on simple LBP features
- _ Image processing pipeline to enhance detection performance
- _ Operate under less ideal environment
- _Low computational demand

Bongjin Jun et.al. "A compact local binary pattern using maximization of mutual information for face analysis" IAPR 2007

AQUARIUM AR RESEARCH

FRAMEWORK OF PROPOSED SYSTEM

SAMPLES COLLECTION

- _ Manually tagging process
- _ Custom software developed for tagging
- _Around 400 tags an hour
- _ No special installment required

AQUARIUM AR THE PROJECT

THE **PIPELINE**

- _ Highlight dominate color of the fish
- More or less a fundamental form of background removal
 Inconsistent output, but a strong complement to cascade classifier

$$P(h) = \iint P(h, l, s) \, dl \, ds$$

$$P(h) = P_p(h) - P_n(h)$$

$$H(h) = T(P(h), 0) = \begin{cases} P(h) & \text{if } P(h) > 0 \\ 0 & \text{if } P(h) \le 0 \end{cases}$$

$$H(h) = \frac{H(h) - \min(H(h))}{\max(H(h)) - \min(H(h))}$$

$$O(x, y) = H(I_h(x, y))$$

AQUARIUM AR THE EVALUATION

DATA & TRAINING

_ Two species of fish

_ First species dominated by gray tone

_ Second species dominated by colorful red and yellow tone

_ Two footages, training and evaluation

<u>600</u> positive and 250 negative tags for each species in each footages

_25 stages of cascade classifier using the LBP feature

AQUARIUM ARTHE EVALUATION

EVALUATION

- _ The cascade classifier is applied on each positive and negative sample extracted from the evaluation footage.
- Test A is the result of fish detection using proposed processing pipeline on gray colored fish without falling back.

Test B is the standard implementation with only 15 stages of the

cascade classifier training which requires the similar amount of time required for training the proposed implementation.

	Proposed	Standard	А	В
True Positive	443	388	393	580
False Negative	157	212	207	20
False Positive	0	0	83	169
True Negative	250	250	167	81
Training Time (second)	227	472	23	17

Higher accuracy

	Proposed	Standard	А	В
True Positive	443	388	393	580
False Negative	157	212	207	20
False Positive	0	0	83	169
True Negative	250	250	167	81
Training Time (second)	227	472	23	17

	Proposed	Standard	A	В
True Positive	443	388	393	580
False Negative	157	212	207	20
False Positive	0	0	83	169
True Negative	250	250	167	81
Training Time (second)	227	472	23	17

Lower Training Time

(Hence, faster detection speed)

(No falling ba	ick)			_
	Proposed	Standard	A	В
True Positive	443	388	393	580
False Negative	157	212	207	20
False Positive	0	0	83	169
True Negative	250	250	167	81
Training Time (second)	227	472	23	17

(Hence, low reliability)

Standard Implementation				
(15 stages of classifier back)				
	Proposed	Standard	A	В
True Positive	443	388	393	580
False Negative	157	212	207	20
False Positive	0	0	83	169
True Negative	250	250	167	81
Training Time (second)	227	472	27	17

High False Positive

(Hence, low reliability)

Original video feed

DETECT

Detect and mark target

AQUARIUM AR CONCLUSION

CONCLUSION

_ Samples are collected by manually tagging process

(Relatively fast by using customized software)

- _ Image processing pipeline enhances the performance of cascade classifier (Fall back required for gray tone fishes)
- **Compelling** detection rate and accuracy

FUTURE WORKS

- _ More efficient mechanism for orientation invariance
- _ Fish tracking to handle difficult poses

{**GITS** – Waseda University} 12 – 09 - 2013

THANK YOU

Dang Hoang Anh – Kameyama Lab